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Spaceborne Synthetic Aperture Radar (SAR) data acquired by Seasat

and the Shuttle Imaging Radar (SIR-A/B) operating at L-band with HH polar-

ization have been found to be useful in conjunction with other sensors for

lithologic discrimination in arid environments with limited vegetation cover

[1-3]. In order to assess the utility of more advanced sensors for geologic

research and define the unique contributions each sensor makes, remote sensing

data were collected over the Deadman Butte area of the Wind River Basin,

Wyoming (Figure i) as part of a cooperative study between the Jet Propulsion

Laboratory Radar Sciences, Geology and Cartographic Applications groups, the

Hawaii Institute of Geophysics, and the University of Wyoming. The Wind River

Basin is an asymmetric sedimentary basin in central Wyoming created during the

early Eocene Laramide orogeny. The stratigraphic section of the Deadman Butte

study area, which was measured by Woodward [4] is made up of Paleozoic and

Mesozoic marine shales, siltstones, limestones, and sandstones. Sensor

systems included Landsat 4 Thematic Mapper (TM), Thermal Infrared Multi-

spectral Scanner (TIMS) and the Multipolarization, L-band airborne SAR, a

prototype for the next Shuttle Imaging Radar (SIR-C). Sensor parameters are

given in Table I.

Based on previous work by Kahle and Goetz [5], TIMS bands i, 3 and

5 were processed with a decorrelation technique in order to suppress

temperature differences and maximize emissivity differences related to

crystalline structure in silicate minerals. All data were resampled to the TM

pixel size (30m) and registered to the TM base. A rubber-sheet stretch of the

data, based on a set of tiepoints, was used for the registration. The

coregistered data are shown as Figure 2. In order to quantify the improvement

in rock type discrimination that results from using the multisensor data over

any individual data type, a Linear Discriminant Analysis was performed. The

program used in this study is part of the UCLA Biomedical Data Processing

Package [6] and is described by Blom and Daily [I]. Basically, areas of known

rock types are selected as training areas, and means and standard deviations

for each training area in each image are calculated. The program then

determines which image is best for discriminating among the rock units by

computing the discriminant function for each area and attempting to separate

training areas into groups. Remaining images are then checked at the next

step to find the next most useful for separating the training areas into

groups, and so on. In this way, the multisensor images can be ranked in order

of their utility for separating the units, and it is possible to determine

which data set contributes to the discrimination between specific rock types.

Training areas were chosen for each of the major lithologic units

outcropping in the Deadman Butte area, a dolomite member of the Phosphoria

Formation, an unnamed red siltstone member of the Dinwoody Formation, the Red

Peak Siltstone and Alcova Limestone members of the Chugwater Formation, the

Redwater Shale Member of the Sundance Formation, and the Cloverly Sandstone,
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Thermopolis Shale, Muddy Sandstone, Mowry Shale and Frontier Formation. The
results of the Linear Discriminant Analysis are presented in Table 2. The
increased capability to classify units using the multisensor data set over any
individual sensor is shown graphically in Figure 3. Results show that
classification accuracy increases with the addition of new channels up to 96%
using i0 channels, with the three optimum channels being LVH, TIMS5 and TMS.
The overall accuracy achieved using only the TM bands was 76%; using only
TIMS,73%and SARalone, 62%. Thus, the _ultisensor data set provided at least
20% better classification accuracy than any of the individual sensors.
However, it should be noted that this procedure only provides classification
accuracies for the training areas themselves and maynot represent the ability
to classify entire rock units. The results can therefore only be used as one
indicator of the optimum bandpasses. Another important factor is how well the
training areas represent the various lithologies and can be used for
classification, which is a topic of ongoing research.
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Table i. Imaging sensor systems

Sensor TM TIMS Quad-po i SAR

Platform

Altitude

Swath width

Wavelength

Pixel size

TMI :

TM2:

TM3:

TM4 :

TM5 :

TM7:

Landsat 4 & 5

700 km

185 km

.45 - .52 _m

.52 - .60 pm

.63 - .69 pm

.76 - .90 _m

1.55 - 1.75 pm

2.0 - 2.36 pm

30 m

(.45 - 2.36 pro)

Aircraft

i0 km*

4 km*

TIMSI: 8.1 - 8.5 pm

TIMS3: 8.9 - 9.3 pm

TIMSS: 10.2 - 10.9 pm

25 m*

*Typical

Aircraft

I0 km*

6 km*

24.6 cm

i0 m*
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Table 2. Cumulative classification accuracy (%) ranked in order

of decreasing usefulness

LVH TIMS5 TM5 TM2 LW TIMS3 TM7 TMSI TM4 TM3 TMI LHH

U. Frontier 57

L. Frontier 43

Mowry 55

Muddy 75

Thermopolis 33

Clovery 37

Sundance 98

Alcova 16

Chugwater II

Dinwoody 63

Phosphoria 25

Average 42

68 80 84 85 95 94

46 60 62 81 85 89

48 60 58 87 89 88

75 i00 i00 i00 i00

58 97 97 i00 I00

55 84 89 90 93 95

98 99 98 95 95 95

81 90 96 96 98 98

42 48 86 89 90 91

52 59 67 85 82 82

79 79 85 86 89 89

64 81 84 90 92 93

95 95 95 95 95

89 91 92 92 92

95 99 i00 i00 I00

i00 i00 I00 i00 I00 I00

i00 i00 i00 i00 98 98

97 98 98 I00 98

95 99 98 i00 I00

i00 i00 i00 94 95

93 92 92 89 89

85 86 89 92 92

90 87 89 i00 I00

94 95 96 96 96
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Figure 3. Improvement in classification accuracy

using multisensor data set
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